Mechanical

Time: 3 hr

1- The blocks A and B have a mass of 10 kg and 100 kg, respectively. Determine the distance B travels from the point where it is released from rest to the point where its speed becomes 2 m/s using: (a) equation of motion, and principles of

- (b) work and energy (c) conservative energy (d) impulse and momentum.

2- A smooth cylinder C having a mass of 0.5 kg is forced to move along the path $r = (0.5 \ \theta)$ m, where θ is in radians. If the angular position of the arm is $\theta = (0.5 \ t^2)$ rad, where t is in seconds, determine: (a) the force of the rod on the cylinder and

- (b) the normal force of the slot on the cylinder at the instant t = 2 s, where:
- (1) plane of motion is horizontal,

(2) plane of motion is vertical.

3- The 0.5 kg ball is fired up the vertical track using the spring plunger.

First: If the ball begins to leave the track when $\theta = 135^{\circ}$, Determine:

- (a) what is the ball's speed when it reaches point A?
- (b) what is the ball's speed when it leaves the plunger?
- (c) how far s the plunger was pulled back and released.

Second: If the ball will just make it around the loop and land on the platform at B Determine: (a) what is the ball's speed when it reaches the platform at B?

- (b) what is the ball's speed when it leaves the plunger?
- (c) how far s the plunger must be pulled back and released?

4- The 50-Ib block rests on the rough surface for which the coefficient of kinetic friction is $\mu_k = 0.2$. A force $F = (40 + s^2)$ Ib, acts on the block in the direction shown. If the spring is originally unstretched and the block is at rest, determine:

- (a) the block velocity at s = 1.5 ft by:
 - (1) equation of motion and

Prob. 6

- (2) principle of work and energy.
- (b) the power developed by the force the instant the block has moved s = 1.5 ft.

5- The bag A, having a weight of 6 Ib, is released from rest at the position $\theta = 0^{\circ}$. After falling to $\theta = 90^{\circ}$, it strikes an 18 Ib box B. If the coefficient of restitution between the bag and box is e = 0.5, determine the velocities of the bag and box just after impact and the loss of energy during collision.

6- The two disks A and B have a mass of 3 kg and 5 kg respectively. If they collide with the initial velocities shown. The coefficient of restitution is e = 0.65. Determine:

(a) their velocities just after impact. (b) the loss of energy (c) Impulse during collision.

